Math6

Unit 3: Graphs and Data Analysis Data Distribution and Variability: Mean Absolute Deviation

Mean Absolute Deviation

<u>Reminders</u>: The <u>mean</u> of a data set represents what each value in the set would be if the total value of the data was *evenly distributed* to every member of the set.

Objective: You will understand and learn how to find the mean absolute deviation of a given data set.

Vocab: <u>mean absolute deviation</u>: the average, or ______ of the absolute (+) distance of each value in a data set from the mean of the entire set.

Steps: Finding Mean Absolute Deviation

- 1. Put the data set in order.
- 2. Find the mean of your data set.
- 3. Make a table that shows each value in the data set and how far it is from the mean (its deviation)
- 4. Find the sum of all the deviations
- 5. Divide that sum by the number of values in the data set--this is your <u>M</u>ean <u>A</u>bsolute <u>D</u>eviation

 Notes
 Name:

 Unit 3: Graphs and Data Analysis

Math6

Period:

Data Distribution and Variability: Mean Absolute Deviation

Ex #1: Let's say I have a data set made up of the amount of time a group of swimmers can hold their breathe under water. This information is in the following chart:

Holding Breath Underwater (in seconds)						
25	30	35	20	3	19	
28	36	31	29	42	26	

Let's solve for the Mean Absolute Deviation of this data set:

Step #1: Put the data set in order:

3, 19, 20, 25, 26, 28, 29, 30, 31, 35, 36, and 42

Step #2: Solve for Mean:

mean = 25 + 30 + 35 + 20 + 3 + 19 + 28 + 36 + 31 + 29 + 42 + 26 = 324

 $324 \div 12 = 27 \implies 27$ is the mean.

Step #3: Make a table that shows each value and its deviation from the mean:

data (d)	3	19	20	25	26	28	29	30	31	35	36	42
mean (m)	27	27	27	27	27	27	27	27	27	27	27	27
abs. dev. d-m or m-d	24	8	7	2	1	1	2	3	4	8	9	15
					V							

Step #4: Find the sum of all the deviations:

$$24 + 8 + 7 + 2 + 1 + 1 + 2 + 3 + 4 + 8 + 9 + 15 = 84$$

<u>Step #5: Divide the sum of the devations by the number of values in the data set. This is your M.A.D.:</u>

84 ÷ 12 = 7 \Rightarrow 7 is the mean absolute deviation (m.a.d.)

Not	<u>es</u> Name: Pe	riod:
Unit	Math6	
	Data Distribution and Variability: Mean Absolute Deviation	

check: our m.a.d. should be between our highest and lowest deviations.

1 > 7 > 24

Stretch: Can you explain what a m.a.d. of 7 actually means in this problem?

ex. 1) 6, 9, 2, 10, 4, 5	ex.2) 6, 5, 6, 4, 5, 1	ex.3) 9, 9, 0, 8, 9, 3
5, 5, 1, 3	5, 8, 5, 5	2, 10, 0, 0