\qquad
\qquad

Box and Whisker Plot

Terms:

1. Box and Whisker Plot: a graph that breaks data into four parts (quartiles).

Goal: I will know how to identify the 5 -key parts of a box and whisker plot. I will create a box and whisker plot given a data set.

Explanation/Rationale: Mrs. Ruminski graded the latest science test; the current unit was a difficult one! Mrs. Ruminski wants to create a graph that will give her a general idea of how her students did on this very difficult subject matter. A box and whisker plot will allow Mrs. Ruminski to see how her students performed by breaking the class performance into quarters! (What spread did the top 25% of my students score in? At least 50% of my students scored ?)

Steps: Use the following data set to create a box and whisker plot:

$$
20,10,15,8,14,12,5
$$

1. Order data values from least to greatest

$$
5,8,10,12,14,15, \quad 20
$$

2. Identify the Minimum value and Maximum value in your data set (they become your whisker points).

\qquad
Unit 3: Graphs and Data Analysis

Math6
Period: \qquad
3. Determine the median of your data set. The Median is the middle number in the data set.

4. Determine Quartile 1 (Q1) by finding the median of the front half of the data set.
$5, \quad 8, \quad 10, \quad 12, \quad 14, \quad 15, \quad 20$
Q1
\qquad
Unit 3: Graphs and Data Analysis
\qquad
5. Determine Quartile 3 (Q3) by finding the median of the back half of the data set.
$5, \quad 8, \quad 10, \quad 12, \quad 14, \quad 15, \quad 20$

Q3
6. Now you have the 5 key values needed to create a box and whisker plot!

1. Data set: $6,8,9,14,17,20,23,29,35$

$$
\begin{aligned}
& \text { Min }=6 \\
& \text { Q1 }=8.5 \\
& \text { Median }=17 \\
& \text { Q3 }=26 \\
& \text { Max }=35
\end{aligned}
$$

\qquad
Math6
Period: \qquad
2. Data set: $15,24,36,42,45,46$

Min $=15$
Q1 $=24$
Median $=39$
Q3 = 45
$\operatorname{Max}=46$

3. Data set: $58,40,63,34,40$,
\qquad
\qquad , \qquad , \qquad ,

$\operatorname{Min}=34$
Q1 $=37$
Median $=40$
$\mathrm{Q} 3=60.5$
Max $=63$
\qquad

Math6 Period: \qquad

YOU GOT THIS:

1. Data set: $13,15,16,20,23,25,30$

$$
\begin{aligned}
\text { Min } & = \\
\text { Q1 } & = \\
\text { Median } & = \\
\text { Q3 } & = \\
\text { Max } & =
\end{aligned}
$$

2. Data set: $45,49,51,56,60,64,80$

$$
\begin{aligned}
\text { Min } & = \\
\text { Q1 } & = \\
\text { Median } & = \\
\text { Q3 } & = \\
\text { Max } & =
\end{aligned}
$$

\qquad
\qquad
3. Data set: 98, 56, 76, 83, 62
\qquad
, , _ , ,

$$
\begin{aligned}
\mathrm{Min} & = \\
\mathrm{Q} 1 & = \\
\text { Median } & = \\
\mathrm{Q} 3 & = \\
\mathrm{Max} & =
\end{aligned}
$$

The interquartile range (i.q.r.) of a box and whisker plot (q3-q1) is a measure of variability. It helps show the spread of a group of data by breaking it down into quartiles, or fourths. Each quartile has 25% of the data in it.

How much data is in the left whisker?
How much data is in the left side of the box? \qquad
How much data is in the right side of the box? \qquad
How much data is in the entire box? (iqr)
\qquad
Unit 3: Graphs and Data Analysis
Math6
Period: \qquad
How much data is in the right whisker?

