Dividing Fractions Using a Moc

When dividing fractions using a model, you will need to make two identical arrays.

$$
\frac{1}{2} \div \frac{1}{4}=
$$

Divide in halves horizontally

Color in half of the rectangle

Divide in fourths vertically

Color in a fourth of the rectangle.

Now divide the rectangles so that both arrays have the same area.
How many of the 'boats' on the right will fit into the ocean on the left? \qquad

Let's try again!

$$
\frac{2}{3} \div \frac{1}{6}=
$$

Divide in thirds horizontally

Color in $\frac{2}{3}$ of the rectangle

Divide in sixths vertically

Color in $\frac{1}{6}$ of the rectangle.

Now divide the rectangles so that both arrays have the same area.
How many of the 'boats' on the right will fit into the ocean on the left? \qquad

Let's see what happens when only part of a boat on the right fits into the ocean.

$$
\frac{3}{4} \div \frac{1}{3}=
$$

Divide in fourths horizontally

Color in $\frac{3}{4}$ of the rectangle

Divide in thirds vertically

Color in $\frac{1}{3}$ of the rectangle.

Now divide the rectangles so that both arrays have the same area.
How many whole 'boats' on the right will fit into the ocean on the left? \qquad How much of another boat will fit in the remaining space? \qquad Quotient: \qquad

$$
\frac{1}{5} \div \frac{1}{2}=
$$

Divide in fifths horizontally

Color in $\frac{1}{5}$ of the rectangle

Divide in halves vertically

Color in $\frac{1}{2}$ of the rectangle.

Now divide the rectangles so that both arrays have the same area.
How many whole 'boats' on the right will fit into the ocean on the left? \qquad
How much of another boat will fit in the remaining space? \qquad Quotient: \qquad

